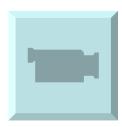
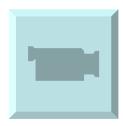

Germinação

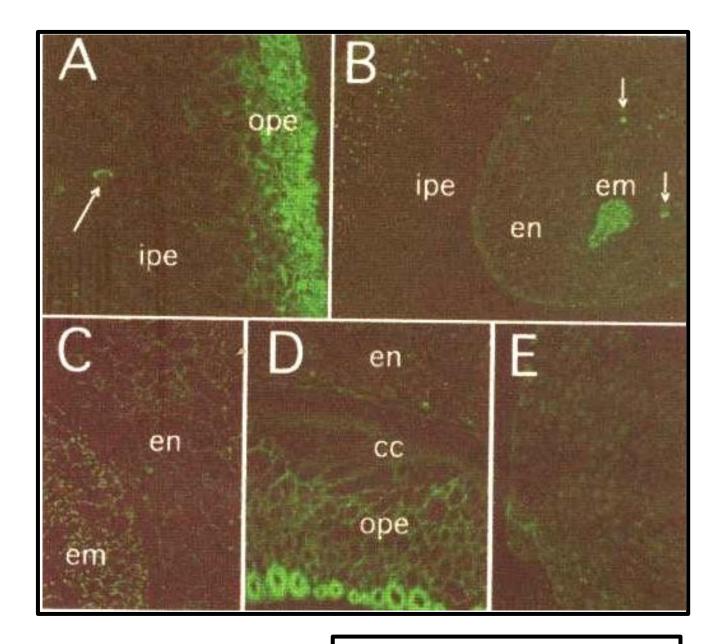
 Sementes secas viáveis → embebição → inicia uma cadeia de eventos → resultado na emergência da radícula → germinação ocorreu com sucesso.


- Embebição → metabolismo rapidamente reinicia.
 - Respiração
 - Atividade enzimática e de organelas
 - Síntese de RNA e proteínas
- Atividades celulares fundamentais que ocorrem na germinação → crescimento plântula.


- a síntese de DNA, RNA e proteínas pode ocorrer em um conteúdo de água de aproximadamente 50%.
- as primeiras atividades em sementes em embebição → reparo dos danos acumulados durante a secagem e o período de armazenamento das sementes → o reparo do DNA.
- a síntese de proteínas → os RNAm preexistentes → acumulados durante o desenvolvimento e a maturação das sementes
- posteriormente, trocando-os pelos novos RNAm, recentemente sintetizados durante a embebição.
- muitas das enzimas requeridas para a mobilização de reservas são sintetizadas de novo, sendo alguns dos produtos iniciais da síntese de proteínas.

Transcrição

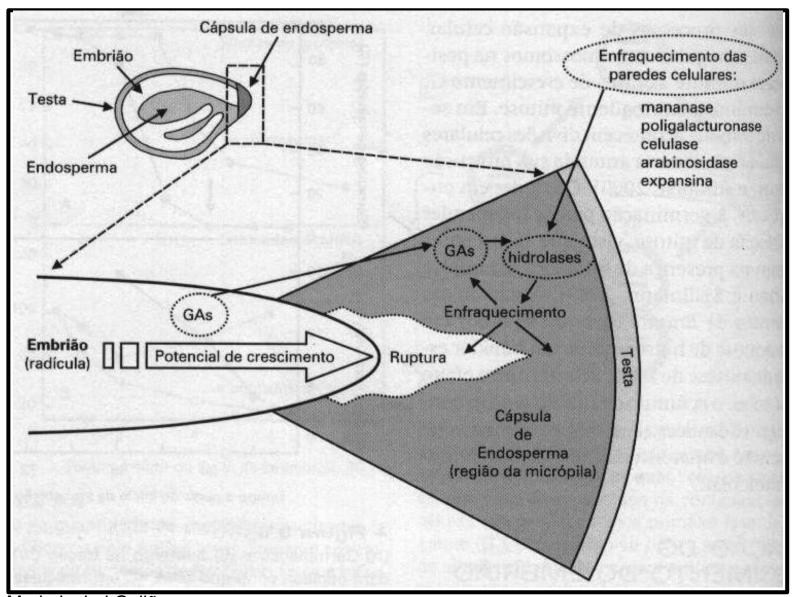
Tradução



Iniciação do ciclo celular

- alongamento da radícula embrionária → alongamento ou expansão das células → diferenciação → crescimento da plântula → como resultado tanto da expansão como de divisão celular.
- preparação para a divisão celular → ocorre bem antes que a protusão da radícula → requer a iniciação do ciclo celular.
- iniciação do ciclo envolve → não somente a síntese de DNA → regeneração do citoesqueleto.
- Ex → sementes de tomate acontecem divisões celulares na radícula embrionária antes da sua protusão.

- **A)** Frutos com 90 DAF, mostrando o crescimento do perisperma;
- **B)** Frutos com 90 DAF, mostrando desenvolvimento incial do endosperma, embrião globular;
- **C)** 180 DAF, grânulos fluorescentes de β-tubulina como resultado da degradação inicial dos microtúbulos;
- **D)** 165 DAF, mostrando o endosperma contendo poucos grânulos de β-tubulina;
- **E)** 225 DAF, fruto maduro, completa ausência de microtúbulos mitóticos.


De Castro e Marraccini, 2006

- outras espécies → germinação parece independer da ocorrência de mitose → germinação das sementes na presença de inibidores da mitose.
- Ex → embebição de sementes de Brassica oleracea (repolho) em solução aquosa de hidroxiuréia → inibidor específico da síntese de DNA
- acontece sem efeito inibidor sobre o acúmulo de tubulina e a expansão celular, mostrando que a mitose não é aparentemente essencial a protusão radicular.

Iniciação do crescimento do embrião e enfraquecimento dos tecidos de revestimento

- para que ocorra a expansão da radícula e a germinação, é necessário haver:
- a) o enfraquecimento e/ou afrouxamento dos tecidos circunvizinhos de revestimento, que podem controlar o sincronismo de emergência da radícula, e/ou
- b) o aumento do potencial de crescimento, ou turgor, por parte do embrião, para superar a resistência exercida pelos tecidos de revestimento, permitindo assim o alongamento (ou expansão celular).

em inúmeras sementes contendo endosperma, enzimas hidrolíticas ou hidrolases que degradam a parede celular tornam-se ativas no próprio tecido de endosperma, principalmente na região designada cápsula de endosperma, a qual cerca a extremidade da radícula embrionária.

Dra Maria Izabel Gallão

- a degradação das rígidas paredes celulares trabalha em ambos os sentidos:
 - Enfraquecendo o tecido do endosperma
 - Aumentando o potencial de crescimento do embrião, permitindo a protusão da radícula.
 - as giberelinas (GAs), entre estas o ácido giberélico, constituem uma classe de hormônios vegetais (fitormônios) envolvidos na iniciação do crescimento.
 - o ácido abscísico (ABA) tem efeito inibidor sobre a germinação.

Priming de sementes

- priming → dar início a, começar, preparar, etc...
- muitos eventos do processo de germinação são iniciados mesmo em conteúdos limitados de água na semente.
- conhecimento acabou sendo posto em prática por muitas companhias de sementes com a finalidade de aumentar sua qualidade.

- esta técnica baseia-se em colocar as sementes para embeber em uma solução osmótica (de polietilenoglicol ou solução salina) → hidratação da semente acontece de forma restrita, limitada → permitindo que alguns eventos metabólicos do processo germinativo aconteçam sem que a germinação seja completada.
- nesse momento, as sementes ainda são tolerantes à dessecação, podendo então ser apropriadamente secas e armazenadas sem danificar o embrião e sem que tenham entrado na fase III.
- as sementes (pré-)tratadas ou de (pré-)tratamento osmótico, essas sementes (pré-)iniciadas germinam mais rapidamente, de modo mais simultâneo e uniforme, do que as sementes sem *priming*;

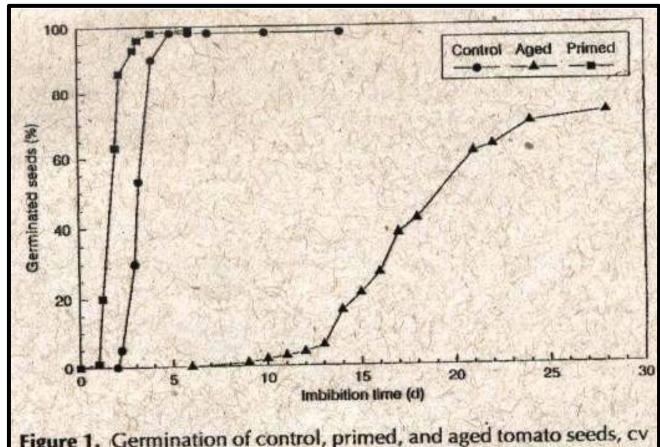


Figure 1. Germination of control, primed, and aged tomato seeds, cv Lerica, upon imbibition of water. Priming was performed in −1 MPa PEG-6000 at 20°C for 7 d, and aging was brought about by treatment at 60°C and 45% RH for 8 d. After these pretreatments, seeds were dried back to their equilibrium moisture content prior to use.

De Castro et al., 1995

Mobilização de reservas

- no ambiente natural, a reservas serão utilizadas como fonte de matéria e energia para a germinação e principalmente para o desenvolvimento de uma plântula a partir do crescimento embrionário.
- em trigo, milho, feijão e arroz a mobilização de reservas nem chega a ocorrer, pois as sementes são utilizadas para o consumo ou para a confecção de produtos industrializados.

produção de bebida alcoólica → uísque →
mobilização de reservas de amido (ou
parte do processo) → produtos básicos do
malte (maltose e maltodextrina) → início
ao processo de confecção da bebida.

 produtos agrícolas → produção de plantas por meio de sementes → mobilização de reservas → essencial para se obter plantas mais rigorosas.

O processo geral de mobilização de reservas em sementes

Dois tipos de reserva:

- reservas de produção principal de energia no início da germinação (sacarose e oligossacarídeos da série rafinósica);
- reservas que são usadas pelas plântulas em crescimento e que servem para a transferência de matéria (carbono e nitrogênio, principalmente) dos tecidos de reserva para as estruturas em desenvolvimento na plântula.

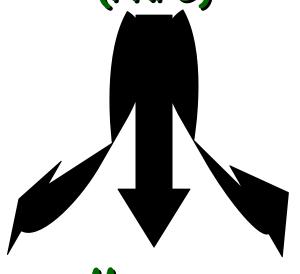
- O processo de reparo de estruturas que podem ter sido danificadas durante o processo de dessecação envolve grande gasto de energia e, na grande maioria dos casos, as sementes quiescentes armazenam entre 2 e 5% do peso seco como sacarose.
- em muitos casos, sementes também acumulam oligossacarídeos da série rafinósica que também são rapidamente degradados para a produção de energia.

 essas reservas normalmente se encontram em toda a semente, inclusive no embrião, e são degradadas logo após a hidratação dos tecidos.

 hidrolases detectadas nas sementes quiescentes → devem ter sido sintetizadas ainda durante a maturação.

Degradação do amido

 para que o amido de reserva seja degradado e utilizado pelo metabolismo, é necessário que os grânulos sejam desmembrados em estruturas menores.


 enzimas que se destacam neste processo: α-amilase, β-amilase e amido fosforilase.

- em contraste a outros tecidos, as reservas de endosperma estão depositadas em células mortas, em gramíneas → exigem a colaboração de tecidos adjacentes para que a mobilização das reservas de amido possa ocorrer.
- no endosperma, a ausência de detecção das enzimas necessárias para a degradação pode ser explicada de três modos:
- não estão presentes;
- estão inativas, ou;
- estão ligadas aos grânulos de amido e, consequentemente, sem atividade.

- o processo de degradação do amido no endosperma de cereais é um dos mais conhecidos do ponto de vista bioquímico e molecular.
- entretanto, esse sistema não serve como modelo para o mesmo processo em tecidos vivos, tal como ocorre em cotilédones de dicotiledôneas.
- nos cotilédones a degradação das reservas também se apresenta como um processo ordenado espacialmente, sendo que no início tende a ser sempre nas células próximas aos feixes vasculares.

Polissacarideos de Reserva de Parede Celular (PRPC)

Xiloglucanos Hymenaea courbaril Copaifera langsdorffi

Galactanos Lupinus albus

Lupinus angustifolius

Mananos

Galactomananos

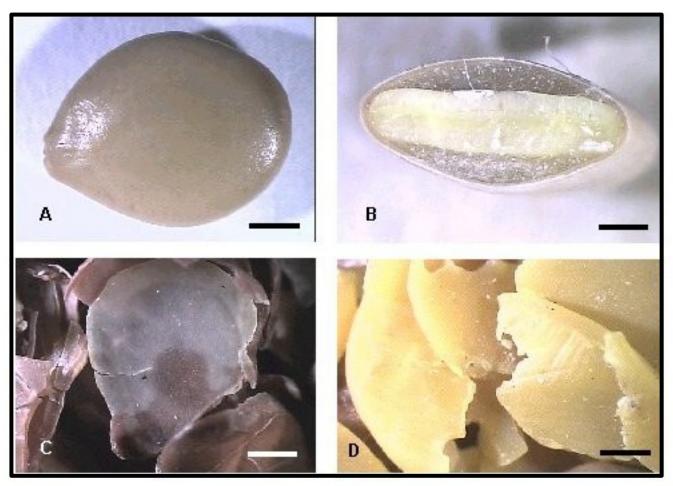
Triconalla foanum anaecum

Glucomananos

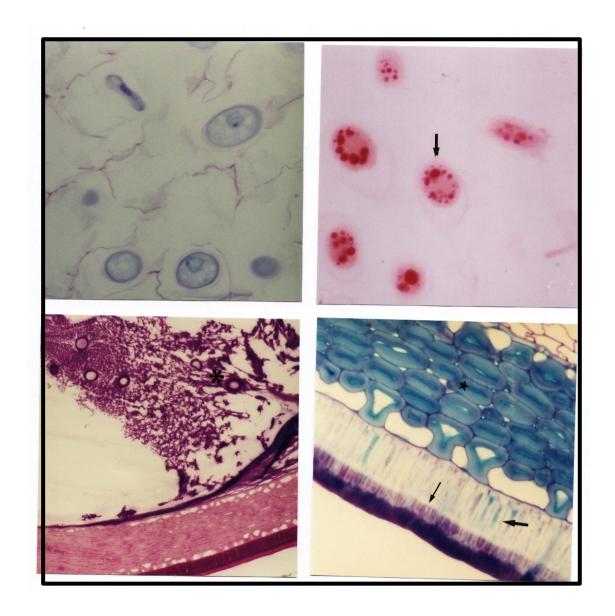
Iris sibirica Dra Maria Izabel Gallão *Scilla nonscripta* Trigonella foenum-graecum Cyamopsis tetragonolobus Ceratonia siliqua Sesbania virgata

Mananos Puros

Coffea arabica Lycopersicon esculentum

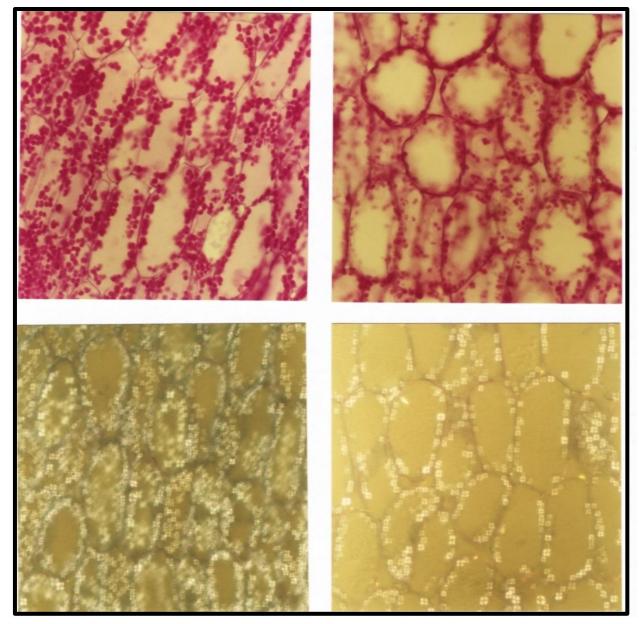

Mananos

- mananos puros → são artificialmente definidos como contendo mais de 90% de manose formando uma cadeia linear do β-(1,4), sem ramificações, podendo ou não o restante estar ramificado com galactose.
- são encontrados em endospermas de sementes de espécies de monocotiledôneas (*Phoenyx dactylifera* e *Phytelephas* macrocarpa (*Jarina*) e dicotiledôneas (café).
- nas sementes Phoenyx dactylifera (tamareira) um pequeno "embrião" de forma cônica se desenvolve lentamente.
- seu cotilédone é transformado em um haustório, o qual absorve os produtos de degradação das reservas do endosperma durante a germinação.
- nessas sementes, uma endo-β-mananase e uma βmanosidase foram detectadas na zona de dissolução próxima ao haustório.


- os mananos estão relacionados com a dureza do endosperma.
- em sementes de tomate foi observado na região endospérmica próxima à extremidade da raiz.
- os mananos presentes em endosperma de sementes de tomate e café são completamente degradados após a germinação → compostos de reserva.
- é uma molécula bifuncional: proteção mecânica do embrião e polissacarídeo de reserva.

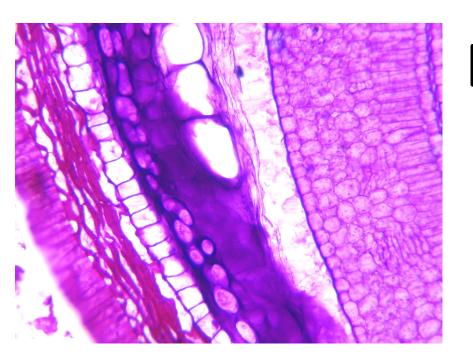
Galactomanano Manose Barra=84μm Galactose ¹

Algaroba

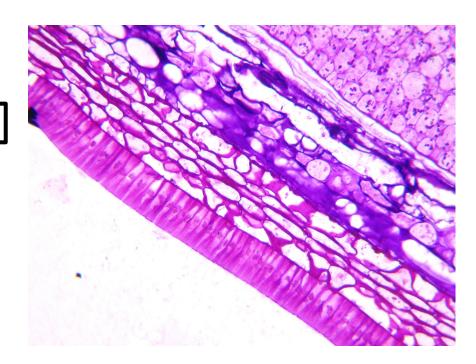


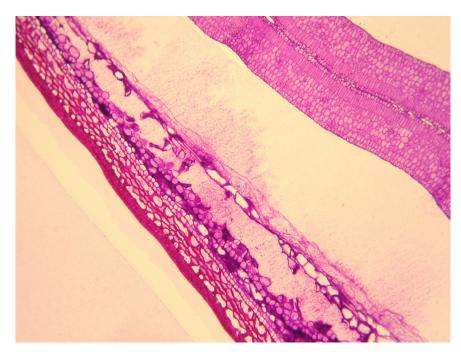
Dra Maria Izapei Gallao

Dra Maria Izabel Gallão


Semente seca

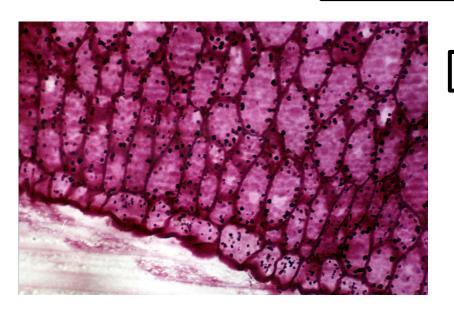
Semente 48h após germinação


Dra Maria Izabel Gallão

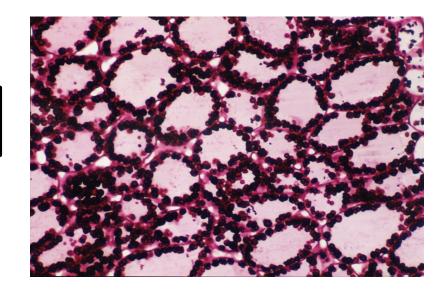

- a mobilização do galactomanano ocorre por hidrólise → monossacarídeos (manose e galactose) ao mesmo tempo em que há a produção de sacarose.
- sacarose → é o açúcar de transporte que levará os produtos da mobilização da reserva até o embrião em crescimento.
- paralelamente à degradação de galactomanano no endosperma, o amido é produzido transitoriamente nos cotilédones.
 - as enzimas: fosfomanoisomerase e fosfoglucoisomerase → seriam responsáveis pela epimerização da manose em glucose → esta seria usada na síntese de sacarose no endosperma.
- em todas as espécies de leguminosas estudadas, a mobilização do galactomanano inicia após a germinação (protusão da radícula).

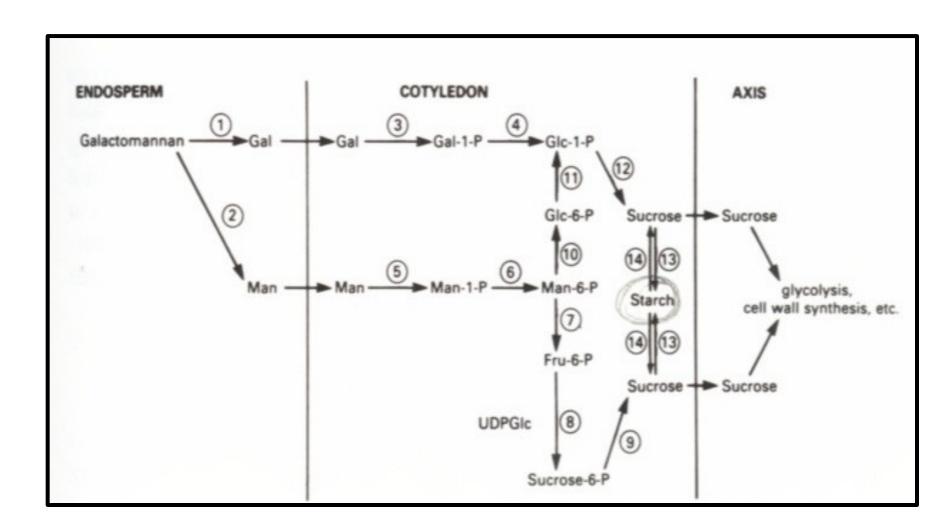

Cassia-de-sião – T

Cassia-de-sião – T4

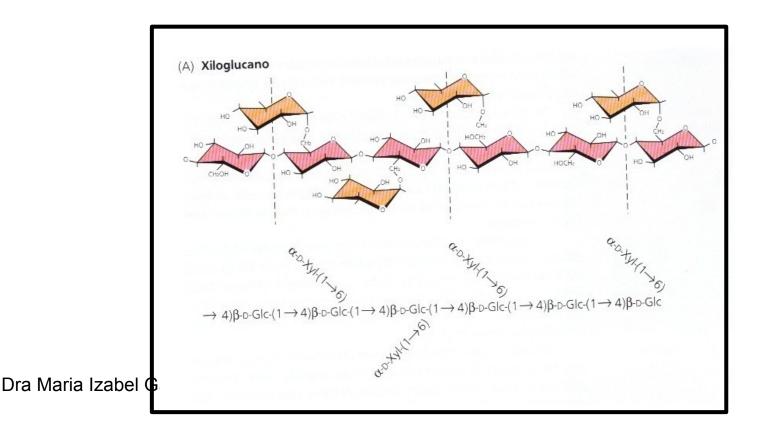


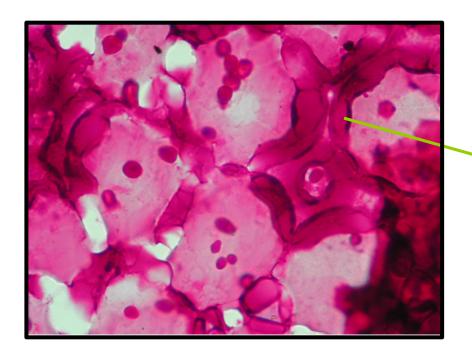
Cassia-de-sião – T6


Dra Maria Izabel Gallão

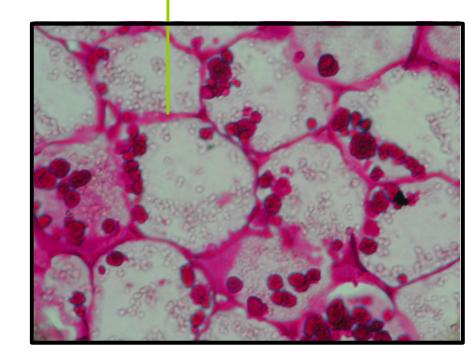

Juca

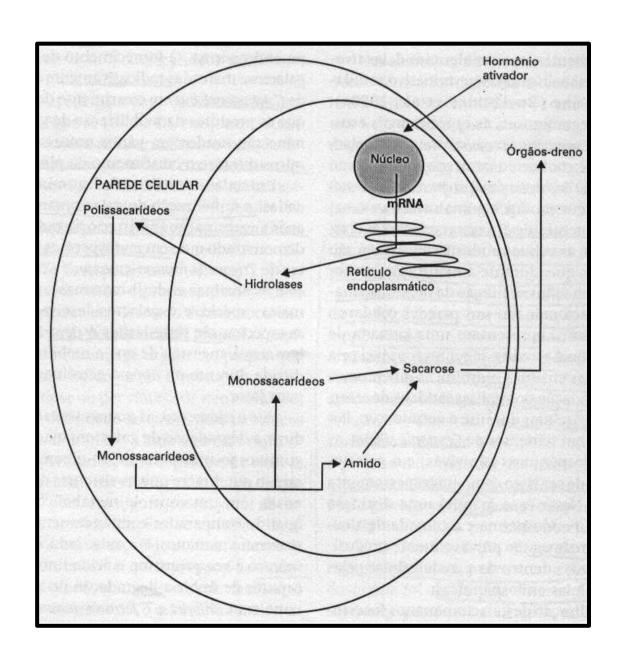
Cotilédone com 0h de embebição


Cotilédone após 120h de embebição

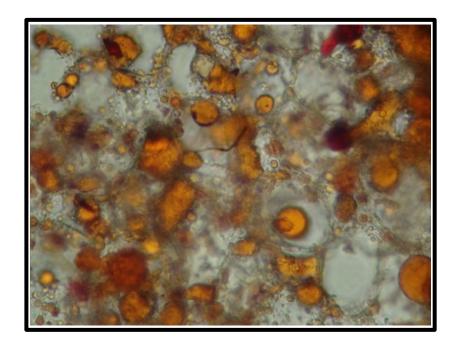


XILOGLUCANOS

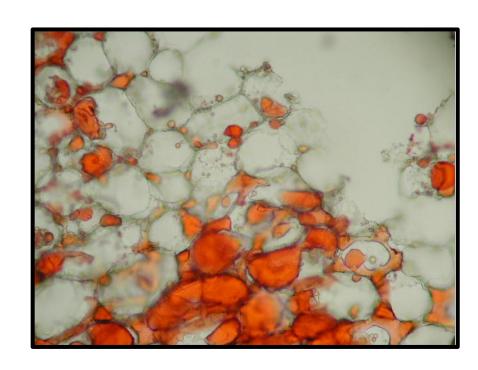

 apresentam uma cadeia principal de β-D-(1→4)-glucano ramificada com ligações α-(1→6) por resíduos de Dxilopiranosídeos.


- em espécies como tamarindo, jatobá e copaíba a mobilização do xiloglucano in vivo foi acompanhada pelo incremento e pela queda da atividade de quatro hidrolases:
- β-galactosidase
- endo-β-(1→4)-glucanase (ou xiloglucanoendo-transglicosidase-XET)
- β-glucosidase
- α-xilosidase

Parede Celular

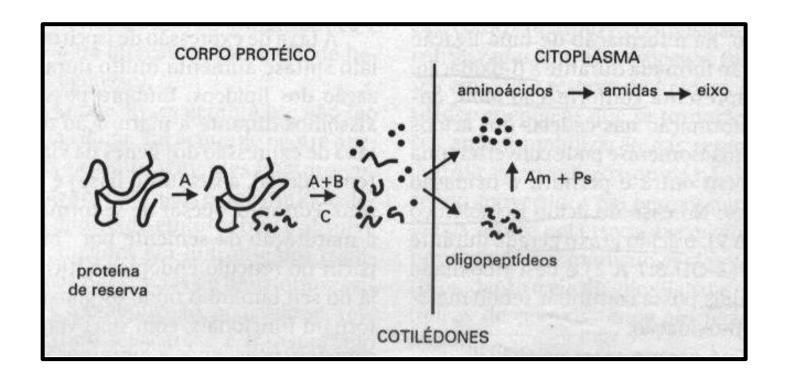


Esquema geral contendo as reações envolvidas na hidrólise de reservas de parede celular.

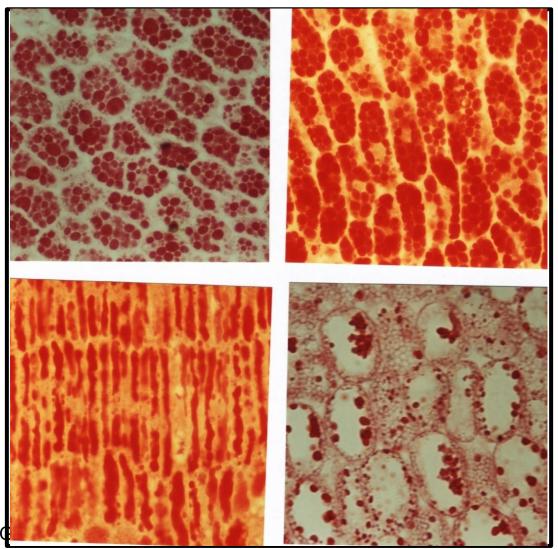

Mobilização de lipídeos de reserva em sementes

- são acumulados na sementes sob a forma de triglicerídeos e armazenados em organelas denominadas corpos lipídicos.
- sua degradação envolve etapas inversas à sua deposição:
 - hidrólise de triglicerídeos liberando glicerol e ácidos graxos livres (AGL);
 - uso do glicerol como fonte de carbono para a síntese de glucose;
 - degradação do ácido graxo livre gerando acetil, que também será usado na síntese de glucose.
 - em geral, as hexoses geradas serão utilizadas na síntese de sacarose, a qual é transportada para o eixo embrionário em crescimento.

Moringa T2


Moringa T4

- processo de formação de hexoses a partir de lipídeos envolve várias etapas, os passos resumidos são os seguintes:
 - os triglicerídeos são hidrolisados nos corpos lipídeos;
 - os ácidos graxos livres são convertidos a succinato nos glioxissomos;
 - o succinato é convertido a malato ou a oxalacetato na mitocôndria;
 - o malato (ou oxalacetato) é exportado para o citosol, onde será utilizado na neoglicogênese.


Mobilização de proteínas de reserva em sementes

- A hidrólise das proteínas de reserva aos seus aminoácidos constituintes é realizada por proteases classificadas de acordo com sua atividade hidrolítica.
- endopeptidases → atacam ligações peptídicas internas ao polipeptídeo, produzindo oligopeptídeos que são reduzidos aos seus aminoácidos constitutivos pelas peptidases:
 - aminopeptidases → atacam o terminal amino (N);
 - carboxipeptidases → atacam o terminal carboxílico
 (C) do peptídeo.

- Generalização da via de mobilização de proteínas de reserva nos corpos protéicos.
- Inicialmente é atacada por proteinases A, B (endopeptidases) e C (carboxipeptidases) para produzir polipeptídeos menores e mais solúveis e, finalmente, aminoácidos que são transportados para o citoplasma.
- Oligopeptídeos no citoplasma são atacados por aminopeptidases (Am) e peptidases (Ps) produzindo aminoácidos.
- Transportados para o eixo embrionário (glutamina e asparagina).

Sementes de algaroba

Dra Maria Izabel (