

Apoptose

Produção de energia

Mitocôndria

Introdução

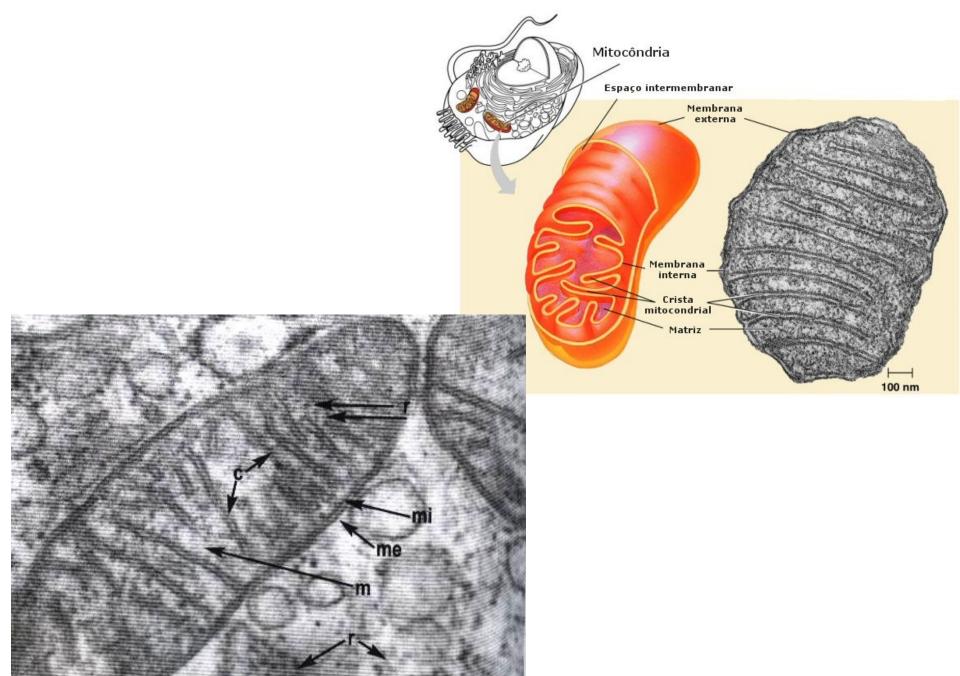
- As mitocôndrias (mitos, filamento e condria, partícula) são organelas citoplasmáticas de forma arredondada ou alongada, existentes em praticamente todos os tipos de células eucariontes, em número proporcional à atividade metabólica de cada uma, sendo então variável nas diferentes células.
- A primeira observação sobre as mitocôndrias foi feita em 1894 por Altmann, que as denominou "bioblastos" e sugeriu a sua relação com a oxidação celular, mas somente em 1950, com a invenção do microscópio eletrônico, foi possível conhecer mais sobre a estrutura dessa organela.

- M.O. → coloração verde JANUS → oxidação do corante → citocromos;
- M.E.T. → ultra estrutura;
- Células eucariontes;
- Tamanho → 0,2 a 1 μm de diâmetro;
 - -2 a 8 μm de comprimento;

Principal função: produção de ATP → empregado para:

- Reações enzimáticas;
- Mecanismo de transporte ativo;
- Biossíntese de biomoléculas;
- Transmissão de impulso nervoso;
- Mobilidade celular;
- Contração muscular;

ATP → ADP → AMP

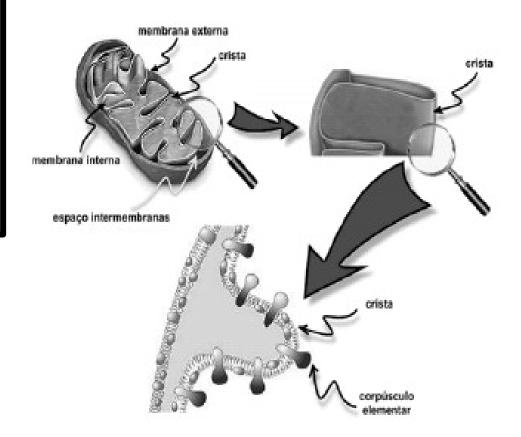

- Produção de ATP pode ser por 3 vias:
 - Glicólise no citoplasma;
 - produzido dentro dos cloroplastos;
 - Produzido dentro das mitocôndrias → oxidação de vários substratos;

Composição química

- Membranas lipoprotéica
 - Membrana externa → 50% de lipídeos (colesterol);
 - Membrana interna → 20% de lipídeos e 80% de proteínas;
 - Complexo ATPásico → ATPsintetase
 - Partícula FoF1 → contém o sítio catalítico para a síntese de ATP;
 - Fator Fo →pedúnculo, associa F1 com a membrana;

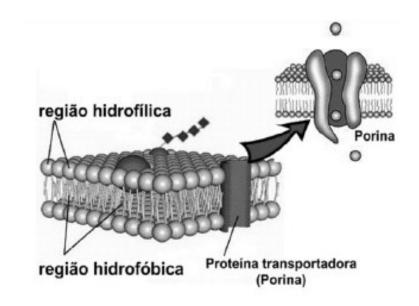
Ultra-estrutura

- Permeabilidade das membranas;
- Água, O₂ e pequenos ácidos graxos entram livremente na matriz mitocondrial;
- NAD⁺, NADH, AMP, ADP, GTP, ATP, CoA E ACETIL-CoA, H⁺ e Pi → membrana interna é impermeável a estas moléculas;
 - Passagem ocorre através de sistema de transporte → proteínas carreadoras ou translocases;
- Partícula FoF1 → ATPsintetase → F1 → ATPásica → 5-6 unidades protéicas;



Membrana mitocondrial interna

- A membrana interna apresenta numerosas cristas que ampliam em muito sua área de contato com a matriz, característica que aumenta a eficiência das reações químicas que ocorrem em sua superfície.
- Esta membrana é livremente permeável somente ao oxigênio, ao CO₂ e a água.


- Possui grande conteúdo protéico (cerca de 75% de proteínas).
- Citocromos → cadeia respiratória;
- NADPHdesidrogenase → libera um par de elétrons para a cadeia respiratória;
- Succinato desidrogenase → catalisa uma das reações do CK;
- Carnitina aciltransferase → participa da transferência de ácido graxo do espaço intermambranas para a matriz mitocondrial;
- rica em cardiolipina → fosfolipídio que contribui para a impermeabilidade ao dificultar a passagem de íons, que em altas concentrações na matriz mitocondrial, poderiam interferir na síntese de ATP.

- A superfície interna dessa membrana está em contato com a matriz mitocondrial e tem grande número de partículas chamadas de corpúsculos elementares.
- As principais estruturas existentes na membrana interna são os complexos enzimáticos que formam a cadeia respiratória e a proteína F1Fo ATP Sintase presente nos corpúsculos elementares.

Membrana mitocondrial externa

- A membrana externa é lisa, rica em colesterol e sua face externa está em contato com o citosol.
- Permeável a íons, metabólitos, CO₂, O₂, ATP e ADP.
- Essa permeabilidade deve-se principalmente à presença de grandes proteínas embebidas na bicamada fosfolipídica, as porinas.

- Há entre as duas membranas um espaço denominado espaço intermembranas que contém várias enzimas.
- Neste espaço ocorrem muitas reações importantes do metabolismo celular.

Matriz mitocondrial

- A matriz preenche o espaço formado pela membrana interna;
- Apresenta características de gel (cerca de 50% de água);
- DNA mitocondrial, RNA, ribossomos, material protéico em forma de grânulos, cálcio, magnésio, cofatores, íons inorgânicos, oxigênio dissolvido, CO₂, proteínas transportadoras;
- Enzimas e produtos intermediários do Ciclo de Krebs e enzimas da β-oxidação dos ácidos graxos.

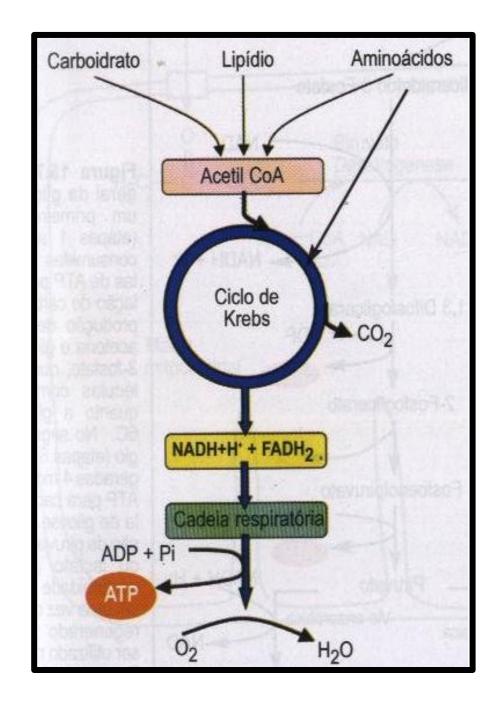
DNA mitocondrial

 O DNA mitocondrial é uma herança exclusivamente materna;

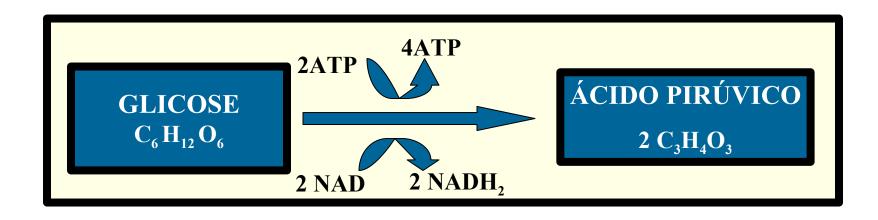
 Constituído, normalmente, por uma molécula circular de DNA em cadeia dupla;

 A molécula contém 16.569 pares de bases e foi completamente seqüenciada por Anderson e colaboradores em 1981;

Função

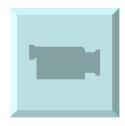

- Fosforilação oxidativa;
- β-oxidação de ácidos graxos;
 - Membrana interna → possui enzimas da cadeia transportadora de elétrons;
 - Matriz mitocondrial → possui enzimas do CK e da βoxidação de ácidos graxos;
- Glicólise → ocorre no citoplasma → anaeróbica
 - → rendimento: 2 NADH₂, 2 ATP e 2 Piruvatos.
 - Piruvato (dentro da mitocôndria) → Acetil-CoA → 2NADH;

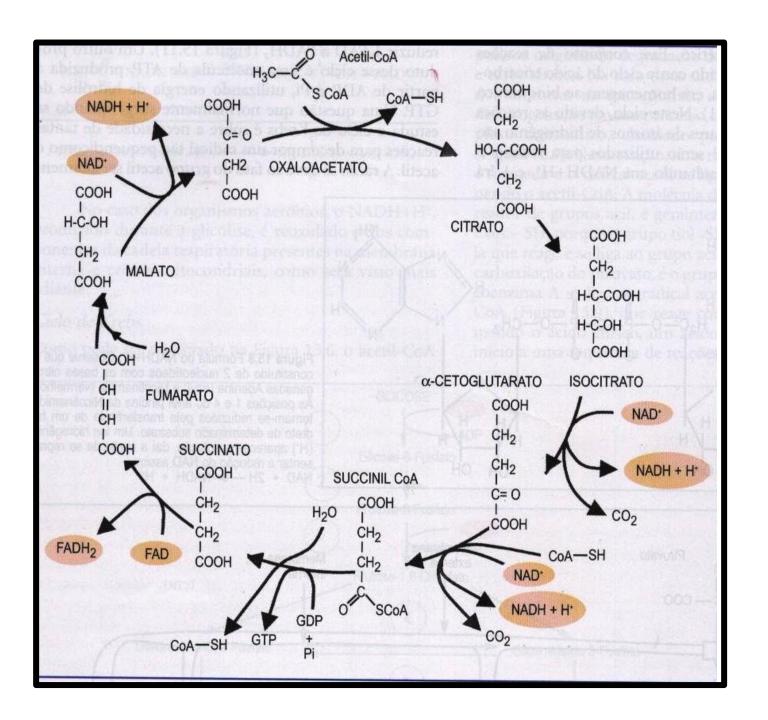
Fisiologia


RESPIRAÇÃO CELULAR

- Processo de oxidação de moléculas orgânicas acompanhado da liberação de energia, que é aproveitada na síntese de ATP;
- Compostos que quando oxidados resultam em alto rendimento de ATP:
 - Carboidratos
 - Lipídios
 - Aminoácidos

- Esquema geral da degradação oxidativa de carboidratos, lipídeos e aminoácidos.
- A energia liberada é utilizada para a síntese de ATP.
- Azul → dentro da mitocôndria;
- Alguns aminoácidos podem formar diretamente compostos intermediários do CK.


- Glicólise → determinada fase ocorre a degradação da glicose até ácido pirúvico → redução de duas moléculas de NAD → NADH₂;
- NADH₂ → são reoxidados transferindo seus elétrons a um outro aceptor → para que o estado de equilíbrio seja mantido;
- Rendimento de 2 moléculas de ATP;



Ciclo de Krebs

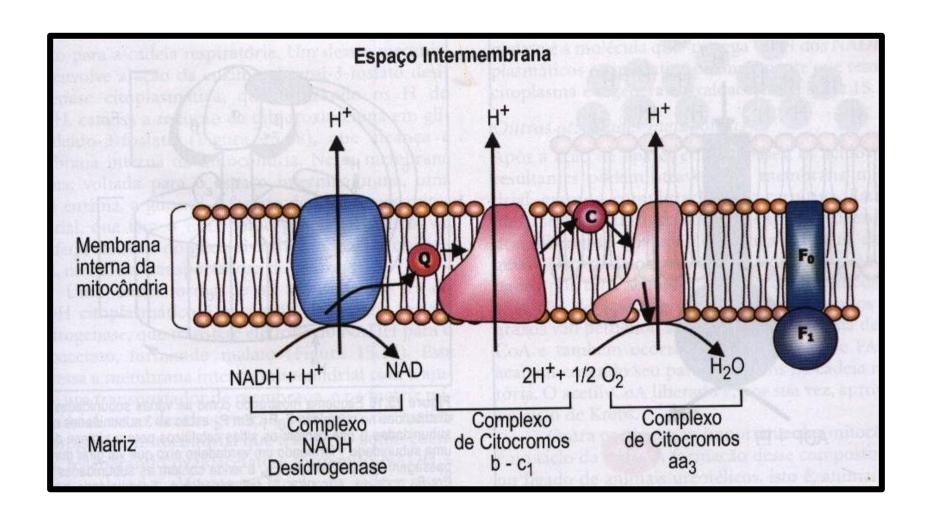
- Ocorre na matriz mitocondrial;
- A Acetil-CoA pode originar da degradação de aminoácidos, lipídios e carboidratos;
- Piruvato → na matriz mitocondrial →
 descarboxilado e desidrogenado → Piruvato
 desidrogenase → formado NADH₂ é formado e
 o radical acetil se liga à Coenzima A → acetil CoA;

Ciclo de Krebs

- Os intermediários produzidos no CK são utilizados pela célula para metabolizar produtos de outras reações que ocorrem no citoplasma;
 - Ex: oxaloacetato e α-ketoglutarato (síntese de aminoácidos);
- São produzidos 6 NADH₂ e 2FADH₂;

- Importância do Ciclo de Krebs → produção de NADH₂ e FADH₂ seus elétrons para a cadeia transportadora de elétrons;
 - Produção de GTP;

Cadeia Respiratória

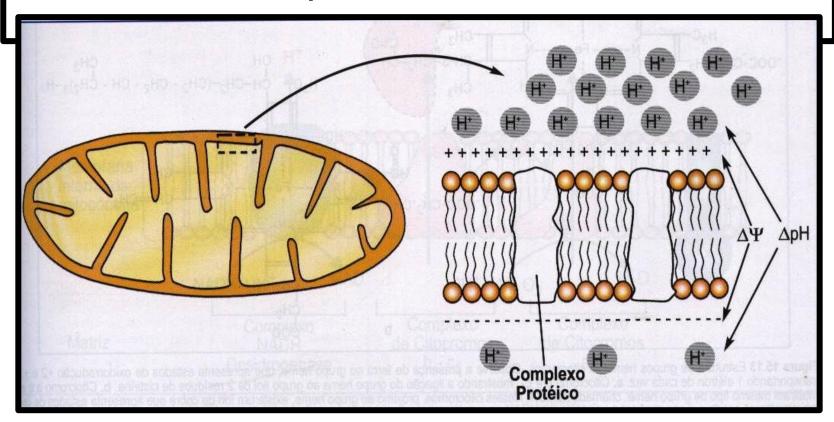

- É constituída por diversos componentes formados, em sua maioria, por complexos protéicos contendo grupos heme.
- Isso permite a transferência de elétrons graças à possibilidade dos átomos de ferro se reduzirem (aceitando elétrons) e se oxidarem (doando elétrons).
- Até ceder elétrons ao oxigênio com consequente formação de água.

Citocromos – estão dispostos na bicamada lipídica da membrana interna da mitocôndria.

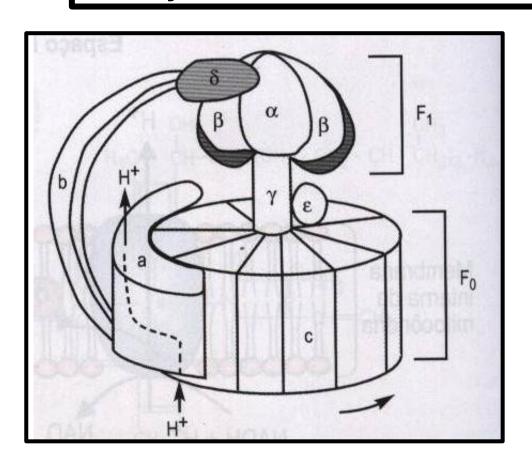
Fosforilação oxidativa

- Os NADH₂ e FADH₂ produzidos durante a glicólise, o Ciclo de Krebs e a Oxidação de ácidos graxos → são oxidados por uma cadeia transportadora de elétrons.
- A cadeia transportadora de elétrons é um sistema complexo de proteínas localizado na membrana interna mitocondrial de células eucarióticas e na membrana plasmática de células procarióticas.

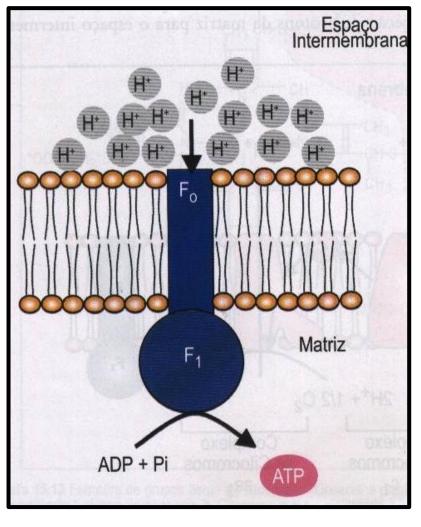
Os três complexos protéicos da cadeia respiratória são oxidases bombeadoras de prótons.



Valores de potenciais redoxi para componentes da cadeia respiratória e número de elétrons envolvidos.


Par redoxi	E° (V)	e ⁻ transferidos
NAD + 2H ⁺ + 2e ⁻ → NADH+H ⁺	- 0,32	2
Ubiquinona + 2H ⁺ + 2e ⁻ → ubiquinol	+0,11	2
Cit-c ₁ (Fe ³⁺) + e ⁻ \rightarrow cit-c ₁ (Fe ²⁺)	+0,23	1
Cit- c(Fe ³⁺) + e ⁻ \rightarrow cit- c (Fe ²⁺)	+0,24	1
Cit-a (Fe3+) + e cit-a (Fe2+)	+0,25	1
Cit- $a_3(Fe^{3+}) + e^- \longrightarrow Cit-a_3(Fe^{2+})$	+0,35	1
$O_2 + 4H^+ + 2e^- \rightarrow H_2O$	+0,82	4

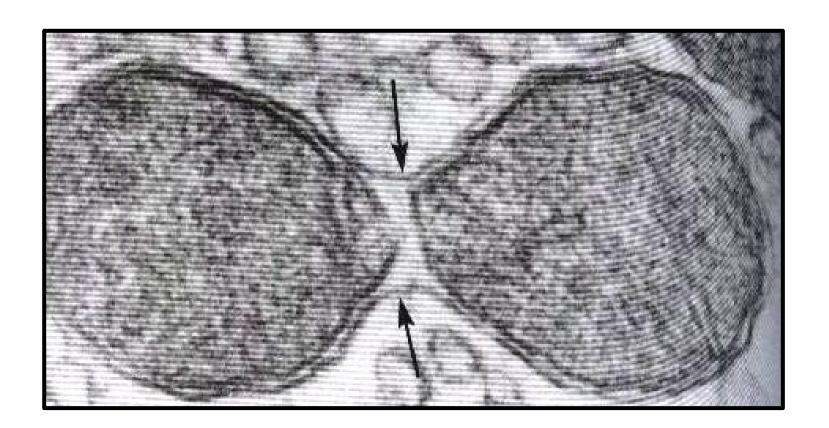
- Esse bombeamento de prótons gera um gradiente através da membrana interna;
- Esse gradiente de prótons é a origem da energia livre que é dissipada quando os prótons fluem de volta para a matriz mitocondrial através da proteína ATPsintetase.


Hipótese Quimiosmótica

- Durante a passagem de volta dos prótons ocorre a formação do ATP

- Partícula F1 → contém o sítio catalítico para a síntese de ATP;
- Fator Fo → pedúculo, associa F1 com a membrana.

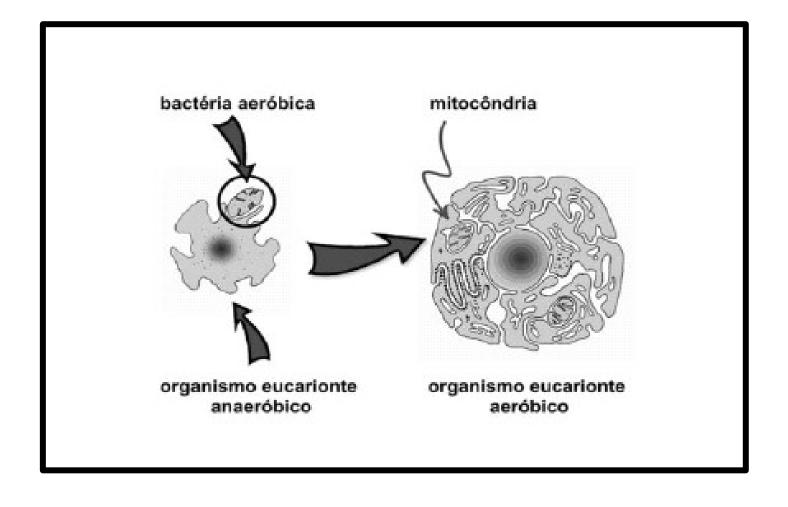
Síntese do ATP



Outras atividades metabólicas

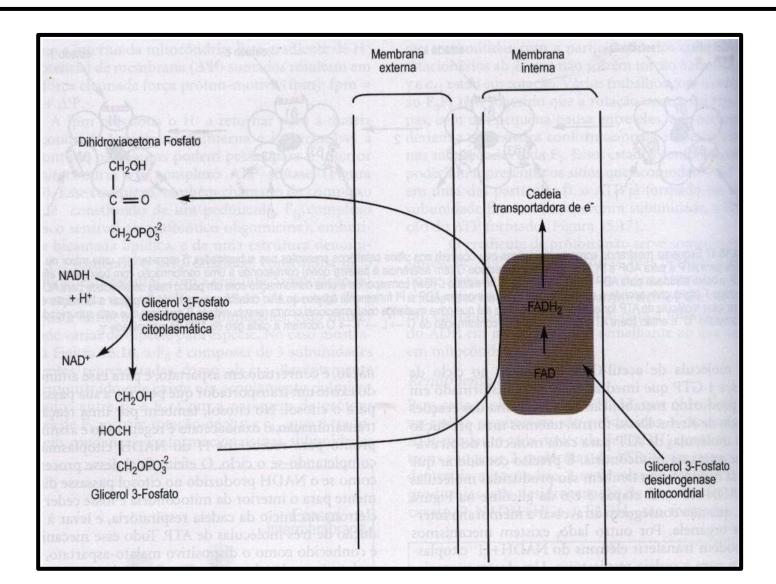
- β-oxidação de ácidos graxos;
- Participação no Ciclo da uréia;
- Participação na produção de hormônio esteroíde →
 colesterol → produzido nas membranas do REL →
 citoplasma → mitocôndria → membrana interna →
 pregnenolona → REL → testosterona;
- Tecido adiposo de recém-nascido → termogenina → membrana externa → permeável aos prótons → desacoplando o transporte de elétrons da síntese de ATP → energia liberada no transporte é perdida na forma de calor.

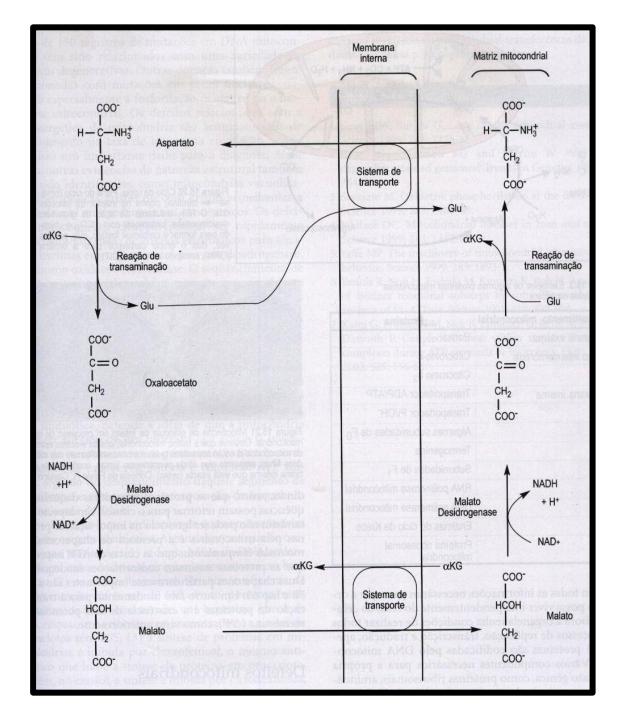
Biogênese


Mitocôndria de glândula de inseto em processo de divisão.

Origem - Teoria da Endossimbiose

Evidências sugerem que as mitocôndrias derivaram de bactérias aeróbicas que foram fagocitadas por células eucariontes anaeróbicas → escaparam dos mecanismos digestivos no interior da célula e se estabeleceram como simbiontes, recebendo proteção e nutrientes e em troca realizando respiração → processo de liberação de energia dos alimentos muito mais eficiente que a fermentação → pois enquanto esta libera 2 ATP por molécula de glicose → a respiração produz 38 ATP por glicose.

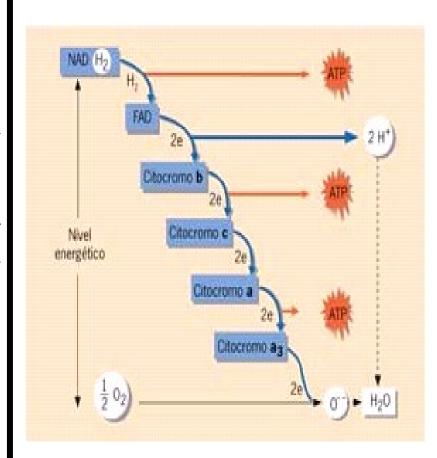

Teoria da Endossimbiose


Evidências

- As mitocôndrias possuem síntese protéica e autoduplicação independentes daquela da célula.
- Os RNA's (transportador, ribossômico e mensageiro) são semelhantes aos das bactérias.
- Possui DNA circular e não associado a proteínas, assim como o DNA da bactéria.
- Presença de uma membrana dupla ao redor dessa organela.
 - A membrana mais externa teria tido origem na própria membrana do fagossomo, assim, essa se assemelha a membrana plasmática das células eucariontes, enquanto que a membrana interna tem composição molecular parecida com a das membranas das bactérias.

 Glicerofosfato é oxidada pela ação da enzima glicerol-3fosfato → regenera dihidroxicetona fosfato e forma FADH2.

Dispositivo do malato-aspartato



Radicais Livres

- Radical livre é um átomo ou um grupo de átomos com elétrons não pareados na última camada eletrônica.
- Os radicais livres são altamente reativos e reagem com outros átomos ou moléculas, transformando-os em novos radicais livres, em uma reação em cadeia.

Radicais Livres

- O oxigênio procura completar seus dois últimos orbitais, sendo altamente instável e reativo.
- A forma mais importante de formação das espécies reativas tóxicas do oxigênio é a cadeia respiratória das mitocôndrias
- O oxigênio é utilizado para se combinar com o hidrogênio ao final da cadeia respiratória, cerca de 95% a 98% desse oxigênio combina-se com os prótons do hidrogênio e fornecem água, cerca de 5% a 2% ficam "livres".

Radicais Livres

- Entre os efeitos lesivos podemos citar os danos causados às proteínas, lipídios, carboidratos, enzimas, entre outros, levando a alterações metabólicas no corpo humano. São conhecidos também efeitos mutagênicos no DNA.
- Hoje em dia aproximadamente 40 doenças já foram associadas aos Radicais Livres (Mal de Parkinson, Osteoporose, Enfisemas, Angina, etc)

Miopatia Mitocondrial

 Miopatia mitocondrial é um distúrbio genético caracterizado por oftalmoplegia externa crônica progressiva (OECP), desordem que gera paralisia lentamente progressiva dos músculos extra-oculares, e ptose palpebral superior, apresentandose a partir da 3ª e 4ª década de vida.